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Abstract With satellite soil moisture (SM) retrievals becoming widely and continuously available, we aim
to develop a method to objectively integrate the drought indices into one that is more accurate and consis-
tently reliable. The data sets used in this paper include the Noah land surface model-based SM estimations,
Atmosphere-Land-Exchange-Inverse model-based Evaporative Stress Index, and the satellite SM products
from the Advanced Scatterometer, WindSat, Soil Moisture and Ocean Salinity, and Soil Moisture Operational
Product System. Using the Triple Collocation Error Model (TCEM) to quantify the uncertainties of these data,
we developed an optically blended drought index (BDI_b) that objectively integrates drought estimations
with the lowest TCEM-derived root-mean-square-errors in this paper. With respect to the reported drought
records and the drought monitoring benchmarks including the U.S. Drought Monitor, the Palmer Drought
Severity Index and the standardized precipitation evapotranspiration index products, the BDI_b was com-
pared with the sample average blending drought index (BDI_s) and the RMSE-weighted average blending
drought indices (BDI_w). Relative to the BDI_s and the BDI_w, the BDI_b performs more consistently with
the drought monitoring benchmarks. With respect to the official drought records, the developed BDI_b
shows the best performance on tracking drought development in terms of time evolution and spatial pat-
terns of 2010-Russia, 2011-USA, 2013-New Zealand droughts and other reported agricultural drought occur-
rences over the 2009–2014 period. These results suggest that model simulations and remotely sensed
observations of SM can be objectively translated into useful information for drought monitoring and early
warning, in turn can reduce drought risk and impacts.

1. Introduction

Of all natural disasters, the economic and environmental consequences of drought are among the most
serious due to the duration varying from weeks to decades, and widespread spatial extent (AghaKouchak
et al., 2015; Anderson et al., 2015; Hao et al., 2014; Lewis et al., 2011; Mazdiyasni & AghaKouchak, 2015; Mu
et al., 2013; Zhang et al., 2017). Associated with global climate change, the frequency, duration and severity
of drought events show an increasing tendency in some parts of the world (Dai, 2013; Mazdiyasni & Agha-
Kouchak, 2015). Drought indicator development is essential for monitoring drought conditions, providing
timely seasonal forecasts, and consequently reducing drought risk and impacts (Pozzi et al., 2013; Sheffield
et al., 2014; Tarhule & Lamb, 2003).

Agricultural drought is commonly defined as an event where root-zone soil moisture (SM) deficits result in a
reduction in crop yields, plant biomass and ecologic productivity (Anderson et al., 2011; Azmi et al., 2016;
Bolten & Crow, 2012; McNally et al., 2015; Wilhite & Glantz 1985; Zhang et al., 2017). The SM status in various
soil layers is an important indicator of agricultural drought, providing more information than the rainfall
anomaly alone. Modern land surface models (LSMs) offer a complex parameterization of the surface energy
balance and detailed vertical water balance physics in an attempt to more accurately characterize temporal
variations in root-zone soil moisture availability (Crow et al., 2012; Dai et al., 2003; Ek et al., 2003; Koster
et al, 2000; Kowalczyk et al, 2006; Oleson et al., 2004; Yang et al, 2003; Yin et al., 2015a). However, these
model-based estimates are typically subject to errors in the model physics and parameterizations, and in
the meteorological forcing data (Reichle & Koster, 2004; Yin et al., 2014, 2015b). Data assimilation techniques
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permit the modeled soil moisture (SM) to be corrected toward the observations with the correction degree
determined by the error levels associated with each (Reichle & Koster, 2004). With satellite SM retrievals
becoming widely and continuously available, it is consequently believed that a land data assimilation sys-
tem that merges satellite retrievals and model estimates of soil moisture may provide more reasonable val-
ues of land surface state variables (Crow & Wood, 2003; Hain et al. 2012; Koster et al., 2009; Kumar et al.
2009; Reichle & Koster, 2004; Yin et al., 2015b, 2015c; Xia et al., 2012; Zhan et al., 2012). In the most widely
used ensemble Kalman filter (EnKF), still, satellite SM observations need to be bias-corrected to respect the
assumption that retrieval errors are Gaussian-distributed. The current bias-correction approaches used for
the EnKF data assimilation might have caused useful information in the observations lost in the model sim-
ulations (Nearing et al., 2016).

While in situ measurements of SM provide reasonable assessments of moisture conditions at the local scale,
they are deficient in representing the soil moisture and drought dynamics at large scales due to insufficient
data coverage (Yuan et al., 2015). In contrast, microwave (MW, active or passive) remote sensing observa-
tions can provide spatially consistent estimates of the SM state. Although they can only sense the surface
soil depth, usually within 0–5 cm (Kerr et al., 2001; Naeimi et al., 2009; Njoku et al., 2003; Wang et al., 2015;
Yin et al., 2015b), there is generally a close relationship between surface SM and SM in the deeper soil layers
at weekly and longer time scale (Albergel et al., 2008). The SM status in surface soil layer represents the fast-
est response soil moisture dynamics to meteorological anomalies and provides a measure for short-term
droughts (Yuan et al., 2015); and the surface information propagating to deeper soil layers is very important
to early warning agricultural droughts and monitoring flash droughts that can occur very rapidly (Otkin
et al., 2015). However, the MW SM products suffer from the instrument noise and uncertainty in microwave
emission modeling. Land surface temperature (LST)- and green vegetation fraction (GVF)-based quality con-
trol of the satellite SM retrievals can decrease the impacts of these uncertainties, but the empirical
approaches are hard to be widely used (Kumar et al., 2009; Yin et al., 2014).

Comparison of MW SM products to ground-based SM observations is the most common error estimation
approach; however, the in situ observational data from low density networks in which one or two measure-
ments are generally available per satellite footprint can lead to significant differences in the spatial sam-
pling scale (Koster et al., 2009; Miralles et al., 2010). A triple collocation error model (TCEM) methodology
was introduced to estimate the root mean square errors (RMSE) while simultaneously solving for systematic
differences in the climatologies of a set of three independent data sources (Miralles et al., 2010; Scipal et al.,
2008). Based on three separate time series assumed to approximate grid-scale SM products, the TCEM in
previous reports exhibited robust capability to assess novel remotely sensed SM data sets in comparison
with LSM estimations and in situ observations in a limited number of well sampled pixels (Draper et al.,
2013; Miralles et al., 2010).

Drought monitoring is a complex and multifaceted endeavor, warranting use of multiple tools and indica-
tors; the nature of drought monitoring efforts should thus be based on multiple variables/indicators to pro-
vide a more robust and integrated measure of drought through a convergence-of-evidence methodology
(AghaKouchak et al., 2015). Current operational drought monitoring products (Heim, 2002; Svoboda et al.,
2002; Xia et al., 2014) are generally produced via integrating multiple data sources and derivative products
based on a synthesis of indicators/model-simulations and subjective interpretation of how different indica-
tors/model-simulations should be merged in the final analysis. These routinely running drought monitoring
products are thus sensitive to the experts’ experiences/judgment and the model uncertainties from errors
in the indicators. These types of artificial and product errors can be compensated for by objectively merging
multisources drought evaluations through uncertainty-based optimization of remotely sensed observations
and model estimations.

Additionally, to capture different drought characteristic, numerous multivariate drought indices have been
recently proposed. The ordinal regression model permits to estimate the probability of each drought cate-
gory, and in turn to highlight probabilistic drought characterization in the categorical form (Hao et al.,
2016). Yet its properly implement is limited by optimal choice of three drought indices in different regions
and seasons. Besides, other blended drought indicators including the principal component analysis-based
multivariate Aggregate Drought Index (Keyantash & Dracup, 2004; Rajsekhar et al., 2015), the joint distribu-
tion of the accumulated precipitation and streamflow-based Joint Drought Index (Kao & Govindaraju, 2010)
and Multivariate Standardized Drought Index (Hao & AghaKouchak, 2013) are basically based on the water
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balance model and multivariate analysis (Hao et al., 2016). Thus, development of a method for objectively
integrating soil moisture satellite observations and model simulations toward a blended drought index is
still challenging. This paper is an attempt in this direction

In this paper, we aim to objectively determine uncertainties of satellite observation- and model simulation-
based drought estimations, and in turn to optimally merge any collection of drought indicators in a fully
automated statistical framework. With respect to the drought monitoring benchmarks and the reported
drought records, the advantages of the optimally objectively blended drought index over the traditional
subjectively integrated drought indices are demonstrated. The specifics of the method are described in the
next section. The results and validations are then presented in sections 3–5. The potential of applying the
method in drought monitoring operation is discussed in section 6, and a brief summary is given in last
section.

2. Data and Method

2.1. Data
For this study, we use 6 different SM products. The first is a land surface model estimate of SM from the
Noah version 3.2 (referred to as the NLSM). The layer thickness-weighted average of SM estimates in the
top three soil layer (0–10 cm; 10–40 cm; 40–100 cm) is used to characterize root zone (0–100 cm) SM. The
NLSM simulations were conducted on a near-global gridded domain (from 2608S, 21808W to 908N, 1808E)
at 25 km spatial resolution. The model was spun up by cycling 50 times through the period from 2001 to
2007. Then the simulation was run over the 2008–2014 period with one half hour time-step inputs and daily
outputs. Atmospheric forcing (Table 1) was taken from 3 hourly 25 km Global Land Data Assimilation Sys-
tem (GLDAS) precipitation and Global Data Assimilation System (GDAS) meteorological data. Various
updates to the specification of vegetation in Noah have been implemented. For example, 2007–2010 Mod-
erate Resolution Imaging Spectroradiometer (MODIS) collection 5 land cover maps and 8 day MODIS leaf
area index (LAI)-based green vegetation fraction (GVF) were used to update the climatological fields in
Noah (Yin et al, 2015a, 2016).

The next drought indicator (Table 1) used in the analysis is the Evaporative Stress Index (ESI), generated
with the Atmosphere Land Exchange Inverse (ALEXI) model using land surface temperature data retrieved
from satellite thermal infrared imagery (Anderson et al., 1997, 2011). The ESI represents temporal anomalies
in the ratio of actual evapotranspiration (ET) to potential ET (PET) and requires no information about ante-
cedent precipitation or subsurface soil characteristics (Anderson et al., 2011; Hain et al., 2012). Until recently,
ALEXI ESI data production has been limited to areas with high resolution temporal sampling of geostation-
ary sensors (Hain et al., 2015). However, our research team has developed a new and novel method of using
twice-daily observations from polar sensors such as MODIS and Visible Infrared Imaging Radiometer Suite
(VIIRS) to estimate the mid-morning rise in LST that is used to drive the energy balance estimations within
ALEXI. This allows the method to be applied globally using the sensors onboard polar-orbiting satellites
rather than a global composite of all available geostationary datasets. The global ALEXI ESI product is avail-
able at a spatial resolution of 5 km and a period of record from 2001 to 2014, reprocessed to weekly time-
steps and 25-km resolution for this study.

Finally, we use four microwave-based SM products (Table 1), referred to as MWSM. These products include
SM data from the Advanced Scatterometer (ASCAT, Wagner et al., 1999), WindSat (Li et al., 2010) the Soil
Moisture and Ocean Salinity (SMOS, Kerr et al, 2001) instruments, and a blended product from the NOAA
Soil Moisture Operational Product System (SMOPS, Yin et al., 2015b). The SMOPS has been developed to
process satellite soil moisture observational data at the NOAA National Environmental Satellite, Data, and
Information Service (NESDIS) for improving numerical weather prediction models at the NOAA National
Weather Service (Yin et al., 2014). SMOPS scales the soil moisture data products from the European Space
Agency SMOS satellite, ASCAT on EUMETSAT’s Metop-A and Metop-B satellites, and WindSat of Naval
Research Lab to the climatology of the Noah land surface model, and merges them to a blended global soil
moisture data product (Yin et al., 2015b). In this study, daily ASCAT, WindSat and SMOPS blended SM prod-
ucts are used from 2008 to 2014, along with SMOS SM data derived during the 2011–2014 period. These
global microwave SM retrievals are all at 25 km spatial resolution.
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Weekly United States Drought Monitor (USDM) data sets from 2008 to 2014 are used to evaluate the perfor-
mance of the various blended drought indices (BDIs) over the contiguous United States (CONUS). USDM is
the drought map that policymakers and media use in discussions of drought and for allocating drought
relief, reflecting drought signals conveyed in one or more indices, and reporting impacts and observations
from more than 350 contributors around the country (Svoboda et al., 2002). In addition, the global BDIs’
drought monitoring capabilities are also evaluated against the standard anomalies of the monthly Palmer
Drought Severity Index (PDSI) (against the 1985–2014 climatology) at 2.5 degree spatial resolution and the
monthly 3 month standardized precipitation evapotranspiration index (SPEI) standard anomalies (against
the 1985–2014 climatology) at 0.5 degree spatial resolution for the 2008–2014 time period (Dai, 2013;
Vicente-Serrano et al., 2010). As a landmark in the development of drought indices, PDSI uses readily avail-
able temperature and precipitation data to estimate relative dryness and has been reasonably successful at
quantifying long-term drought (Dai, 2013). SPEI is similar to the standardized precipitation index (SPI),
but it includes the role of temperature (Vicente-Serrano et al., 2010). SPEI was developed in 2010 and has
been used in an increasing number of climatology and hydrology studies (Beguer�ıa et al., 2014).

2.2. Method
The Triple Collocation Error Model (TCEM) assumed that the uncertainties or errors of the three retrieval
sources are from mutually distinct sources and are independent from each other (Draper et al., 2013;
Janssen et al., 2007; Miralles et al., 2010; Scipal et al., 2008). In this paper, the TCEM is based on three cat-
egories of soil moisture data sets that provide 25 km grid-scale SM estimations: (1) the NLSM, which is
subject to errors in the model representation and in the meteorological forcing data; (2) the ALEXI
model-based ESI, which does not use any precipitation input, but is sensitive to the accuracy of the ther-
mal infrared (TIR) satellite LST and other model inputs (e.g., vegetation cover, available energy); and (3)
the microwave satellite retrievals which is based on land surface microwave radiation physics with error
sources being microwave satellite sensor signal/noise ratio and soil moisture retrieval algorithm
accuracy.

All of the SM data used in this study were temporally composited over 4 week intervals. Then the uncer-
tainty or RMSE for each of the four MW SM products was individually computed in combination with NLSM
and ESI in TCEM in order to meet the error independence requirement of the three data sets used in TCEM.
Meanwhile, the NLSM and ESI data sets were evaluated four times with each corresponding to a different
MW SM data set. Their errors were calculated as the average of the four RMSE values respectively. The clima-
tology of each of the above-mentioned soil moisture data sets was generated by assembling the variable
values for a particular calendar week for all years of the study periods. Once the climatology was assembled,
the standardized anomalies (w) were computed for week w, year y, and grid location (i, j), as

wðw; y; i; jÞ5 Xðw; y; i; jÞ2Xðw; i; jÞ
rXðw; i; jÞ (1)

where X and rX are climatology and climatological standard deviations for each of the six retrievals. Thus,
drought estimations for MWSM (wMWSM), ESI (wESI) and NLSM (wNLSM) are then expressed as (Draper et al.,
2013; Janssen et al., 2007; Miralles et al., 2010; Scipal et al., 2008)

wMWSM5P1l

wESI5P1x

wNLSM5P1q

(2)

where P indicates the true drought status, and l, x, and q denote the unknown errors in the MWSM, ESI,
and NLSM cases. First, we assume that the three kinds of errors are uncorrelated and:

lq50; lx50; qx50 (3)

Then the RMSE values for MWSM (nMWSM), ESI (nESI) and NLSM (nNLSM) are given by (Miralles et al., 2010; Sci-
pal et al., 2008; Stoffelen, 1998)
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nMWSM5ðwMWSM2wESIÞðwMWSM2wNLSMÞ5l2

nNLSM5ðwNLSM2wESIÞðwNLSM2wMWSMÞ5x2

nESI5ðwESI2wNLSMÞðwESI2wMWSMÞ5q2

(4)

Thus, based on the TCEM, the monthly RMSEs for each of the data sets can be estimated grid by grid within
the global domain.

3. Blended Drought Index (BDI)

Three techniques for combining the available retrievals into a blended index were evaluated. These include
an equal weighted-average blending, an objectively weighted approach, and an optimal integration tech-
nique. Three blended drought indices are all generated on a near-global gridded domain (from 2608S,
21808W to 908N, 1808E) at 25 km spatial resolution over 2008–2014 time period.

3.1. Simple Equal Weighted-Average Blended Drought Index (BDI_s)
BDI_s samples all SM products with equal importance. To increase the spatial coverage of drought estima-
tions, BDI_s integrates all of the six SM retrievals using a weighted-average blending technique. For the
BDI_s, all of the available data sets are assigned the same weight, where the weightings determine the rela-
tive importance of each quantity on the average. When the six SM retrievals are all available, the BDI_s for
each pixel within the global domain is

BDI s5
NLSM1ESI1SMOPS1SMOS1ASCAT1WindSat

6
(5)

If an index is missing at a given pixel, the BDI_s is computed as an average of the available drought
estimations.

3.2. Objectively Weighted Blended Drought Index (BDI_w)
Relative to the BDI_s, the BDI_w treats SM products with lower RMSE as higher quality data and assigns that
data set a greater weight. Thus, the BDI_w is objectively developed according to monthly TCEM-based
RMSE values computed in equation (4). And a weight f(x) for an available index is

f ðxÞ5
1

RMSEx

XN

x51

1
RMSEx

N 2 ½1; 6� (6)

When the drought assessments are all available, then N is 6, and the BDI_w for each pixel over the global
domain is

BDI w5f ðNLSMÞ3NLSM1f ðESIÞ3ESI1f ðSMOPSÞ3SMOPS

1f ðSMOSÞ3SMOS1f ðASCATÞ3ASCAT1f ðWindSatÞ3WindSat
(7)

Given N values from 1 to 5 in equation (6), the BDI_w in equation (7) will be the summation without count-
ing the unavailable drought estimations.

3.3. Optimal Blended Drought Index (BDI_b)
The procedure of generating BDI_b for each pixel in the global domain is described in Figure 1. Each pixel is
filled by the retrieval that is estimated to have the lowest RMSE based on its TCEM estimate, which ensures
that all pixels across the global domain can be covered by the optimal drought estimation information,
instead of integrating the evaluations by building their weights. The monthly TCEM-based RMSE for each of
the six retrievals used here can characterize their time series throughout the year.

4. Evaluation With Benchmark Drought Monitor Products

Drought intensity is classified in the USDM into five categories (Table 2) including D0, abnormally dry
(percentile< 30%); D1, moderate drought (percentile< 20%); D2, severe drought (percentile< 10%); D3,
extreme drought (percentile< 5%); and D4, exceptional drought (percentile< 2%). The statistics of

Water Resources Research 10.1029/2017WR021959

YIN ET AL. 6776



frequency probability for each case here was collected on the global domain over the study period.
The large sample size indicates the statistical results here are qualitatively stable and high likely representa-
tive of common conditions. Thus, all the indices are classified into five categories using the thresholds in
Table 2.

Based on the assumptions that the drought categories are continuous numbers, Figures 2 and 3 show maps
describing the temporal correlation between the USDM and each of the drought indices classified using the
thresholds in Table 2, which are considered in the intercomparison of linear correlation in weekly climate-
division-based ranking of moisture conditions. The CONUS domain-averaged correlation coefficients (R) for
the ASCAT (sample size N 5 364, there are 364 weeks during the period 2008–2014), SMOS (N 5 208, there
are 208 weeks during the period 2011–2014), WindSat (N 5 364), SMOPS (N 5 364), NLSM (N 5 364), and ESI
(N 5 364) retrievals are 0.38, 0.11, 0.18, 0.28, 0.40, and 0.35, respectively. The spatial patterns of the correla-
tions between the USDM and the three BDIs agree well (Figure 3). Stronger correlations are observed over
the Great Plains and the northeastern United States. These are areas of LST and vegetation indices tending

Figure 1. The procedure for constructing the BDI_b using the RMSEs estimated from the Triple Collocation Error Model implemented for each grid in each calen-
dar month. RMSEmin is the minimum RMSE for a grid. And RMSESMOPS, RMSENLSM, and RMSEESI are the monthly RMSE values for soil moisture data sets from SMOPS,
NLSM and ESI cases, respectively.
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to be anticorrelated, which indicates moisture-limiting vegetation growth conditions (Karnieli et al., 2010).
The soil moisture-based BDIs are more sensitive to moisture condition changes. Reduced correlations
between USDM and each BDI are observed over parts of the western and eastern US. In southwestern and
southeastern US, the moisture changes are driven more by radiation and climate, and thus less tightly cou-
pled with moisture-drought (Anderson et al., 2011). And in northwestern US, the short-term precipitation
indices used in the USDM may become desynchronized from land surface moisture conditions, because of
the hydrologic delays in snowpack-forming regions (Shukla & Wood, 2008). In comparison with the USDM,
the average temporal correlation coefficients for BDI_s and BDI_w are 0.36 and 0.34; while the BDI_b yields
the highest correlation (R 5 0.43) in all of the drought estimations.

Based on 30 year (1985–2014) PDSI means, the correlation coefficients between PDSI standard anomalies
and the drought assessments for each of the three BDIs can be found in Figure 4. The sample size for each
BDI is 84, because there are 84 months during the 2008–2014 period. The higher correlation coefficients for
each BDI are found in the areas where the weather stations are relatively dense, such as in the eastern U.S,
Australia and portions of Eurasia (Chen et al., 2002; Mu et al., 2013). The correlation coefficients for BDI_s,
BDI_w, and BDI_b in CONUS (238�488N, 21258�–658E) are 0.45, 0.47, and 0.47, respectively, and in Australia
(–408�–108N, 1158�1658E) are 0.50, 0.53, and 0.59, respectively. The BDI_b (0.48) also yields the highest cor-
relation coefficient in South Africa (–358�-508N, 2308�1658E) in comparison with the BDI_s (0.42) and
BDI_w (0.44). Relative to BDI_s (0.36) and BDI_w (0.38), the BDI_b (0.40) presents successful to increase the
correlation in Eurasia (–108�558N, 2208�1758E). In South America (–558�108N, 2908�–308E), the BDI_s
(0.35) and BDI_w (0.43) exhibit relatively low correlations with respect to the PDSI standard anomalies, while
this situation is significantly improved by the BDI_b (0.48). However, in the areas with weather stations and
rain gauges sparsely distributed, the correlations between PDSI and BDIs are relatively low, such as northern
Africa and the high latitude areas (Chen et al., 2002; Mu et al., 2013).

With respect to the monthly 0.5 degree 3 month SPEI standard anomalies (against 1985–2014 averages)
during the period 2008–2014 (sample size is 84), the correlation coefficients over global domain for each of

Table 2
Drought Severity Information in the Original Standardized Scale

Categories NLSM ESI ASCAT SMOS SMOPS

D0 0 to 20.56 0 to 20.81 0 to 20.58 0 to 20.63 0 to 20.57
D1 20.57 to 20.90 20.82 to 21.12 20.59 to 20.84 20.64 to 21.00 20.58 to 20.85
D2 20.91 to 21.18 21.13 to 21.37 20.85 to 21.04 21.01 to 21.23 20.86 to 21.06
D3 21.19 to 21.48 21.38 to 21.67 21.05 to 21.27 21.23 to 21.42 21.07 to 21.29
D4 21.49 or less 21.68 or less 21.27 or less 21.43 or less 21.3 or less

Categories WindSat BDI_s BDI_w BDI_b

D0 0 to 20.58 0 to 20.34 0 to 20.31 0 to 20.51
D1 20.59 to 20.91 20.35 to 20.56 20.32 to 20.47 20.52 to 20.77
D2 20.92 to 21.18 20.57 to 20.87 20.48 to 20.68 20.78 to 21.00
D3 21.19 to 21.48 20.88 to 21.14 20.69 to 20.87 21.01 to 21.40
D4 21.49 or less 21.15 or less 20.88 or less 21.41 or less

Table 1
Summary of the Commonly Used Data Sets in This Paper

Data Data type Spatial resolution Spatial resolution Period Citations

GLDAS Prep Forcing data 0.258 3 hourly 2001–2014 Rodell et al. (2004)
ESI Drought Index 0.058 weekly 2001–2014 Hain et al. (2015)
ASCAT Microwave SM 0.258 daily 2008–2014 Wagner et al. (1999)
WindSat Microwave SM 0.258 daily 2008–2014 Li et al. (2010)
SMOS Microwave SM 0.258 daily 2008–2014 Kerr et al. (2001)
SMOPS Microwave SM 0.258 daily 2008–2014 Yin et al. (2015b)
PDSI Drought Index 2.58 monthly 1985–2014 Dai (2013)
SPEI Drought Index 0.58 monthly 1985–2014 Vicente-Serrano et al. (2010)
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the three BDIs are exhibited in Figure 5. The higher correlation coefficients for each BDI are shown in
CONUS, Europe, Australia, the eastern China and southern South America, where the rain gauges are rela-
tively dense (Chen et al., 2002). The correlation coefficients for BDI_s, BDI_w and BDI_b in CONUS are 0.46,
0.48, and 0.56, respectively, and in Australia are 0.54, 0.58, and 0.59, respectively. Relative to BDI_s (0.33)
and BDI_w (0.37), the BDI_b (0.41) presents successful to increase the correlation in Eurasia. The BDI_b
(0.40) also yields the highest correlation coefficient in South Africa in comparison with the BDI_s (0.33) and
BDI_w (0.37). In South America, the BDI_s (0.27) and BDI_w (0.32) exhibit relatively low correlations with
respect to the SPEI standard anomalies, while this situation is improved by the BDI_b (0.37). Similar to Figure
4, the low correlations between SPEI and BDIs can be found in the areas where the weather stations and

Figure 2. Correlation coefficients (R) between USDM and (a) ASCAT, (b) SMOS, (c) WindSat, (d) SMOPS, (e) NLSM, and (f) ESI. The grey color indicates insignificant
correlations.
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rain gauges are sparsely, such as Amazon basin, northern Africa and the high latitude areas (Chen et al.,
2002; Mu et al., 2013).

5. Evaluation of Drought Events Using BDIs

BDI performance was also evaluated in relation to reported drought events over the 2009–2014 period (Fig-
ure 6). In general, the major annual drought patterns are captured by each BDI product at this coarse time
scale. All of the three BDIs can well capture the western Russian drought of 2010 that was very long and
intensive, and caused serious damage to the environment and economy (Kogan et al., 2013; Mu et al., 2013)
with BDI_s showing a relatively weak signal. And both 2011 Texas drought and the US-Great Plains drought
in summer 2012 (Hoerling et al., 2014; Otkin et al., 2015) are reasonably represented by the three BDIs, while
major differences are noted in 2012 with BDI_s and BDI_w missing drought signals in the Eastern and
Southern U.S.

According to Australian National Climate Centre (NCC) records (2009a, 2009b), an exceptional drought hit
Australia in 2009, which was mitigated by the widespread heavy rainfall throughout northern and central
Australia in 2010, while the remaining drought was found in the western Australia (NCC, 2010). Frequent
heavy rain events from spring 2010 to autumn 2011, and again in late 2011, lead to Australia’s wettest two-
year period on record, which was heavily influenced by La Ni~na conditions (NCC, 2012). During 2013, serious
rainfall deficiencies created significant drought conditions that began to develop again and lasted over
2013–2014 period (NCC, 2013, 2014). These documented dry and wet conditions in Australia over 2009–
2014 period are effectively exhibited by the annual BDIs (Figure 6) with both BDI_s and BDI_w exhibiting
slight drought intensity.

Several other extreme droughts, such as 2010 Amazon drought (Atkinson et al., 2011; Lewis et al., 2011; Xu
et al., 2011) and the continuous droughts during 2009–2012 period in East Africa (Lyon & DeWitt, 2012), are
all well captured by the BDI_b (Figure 6c). However, BDI_s tends to reduce drought intensity for above

Figure 3. Correlation coefficients (R) between USDM and BDIs over the 2008–2014 period. The gray color indicates insignificant correlations.
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Figure 4. Correlation coefficients between PDSI standard anomalies (against 1985–2014 averages) and BDIs over 2008–2014 period. The gray color indicates
insignificance.

Figure 5. Correlation coefficients between SPEI standard anomalies (against 1985–2014 averages) and BDIs over 2008–2014 period. The gray color indicates
insignificance.
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Figure 6. (a) Annual global terrestrial BDI_s patterns over the 2009–2014 period. The BDI_s ranges from negative (red) to
positive (green) values indicating dry to wet conditions. (b) Annual global terrestrial BDI_w patterns over the 2009–2014
period. The BDI_w ranges from negative (red) to positive (green) values indicating dry to wet conditions. (c) Annual global
terrestrial BDI_b patterns over the 2009–2014 period. The BDI_b ranges from negative (red) to positive (green) values indi-
cating dry to wet conditions.
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drought episodes and BDI_w cannot reasonably reflect the East Africa drought. In addition, Figure 6c illus-
trates how the western U.S. experienced abnormally dry conditions during the 2013–2014 period with the
most severe conditions in California, which had been experiencing its worst drought in more than a century
(AghaKouchak et al., 2015; Cheng et al., 2015); yet both BDI_s and BDI_w basically miss the drought signals
for the California drought event [Figures 6a and 6b].

The severe drought caused by the great Russian heat wave of 2010 lead to extensive wildfires and thou-
sands of human deaths (Barriopedro et al., 2011). The 2010 western Russia drought started in May and
lasted through November with response to the record-breaking high temperature caused by a very
strong La Ni~na event (Barriopedro et al., 2011; Kogan et al., 2013; Mu et al., 2013). Both BDI_s and BDI_w
show the drought event ends in October 2011 with BDI_s showing lower intensity (Figures 7a and 7b);
while the monthly BDI_b results effectively capture the documented droughts in western Russia in 2010
(Figure 7c).

The 2011 drought over the U.S. Southern Great Plains seriously affected agriculture, severely impacted crop
and livestock sectors and significantly influenced food prices at the retail level (Arndt & Blunden, 2012;
Grigg, 2014) with the state of Texas experiencing its driest year since 1895 (Combs, 2012; Hoerling et al.,
2014). This severe drought started in November 2010 and lasted through October 2011, and the dry
situation was mitigated across the southeast Texas Panhandle and eastern Rolling plains in November 2011
by heavy precipitation (Combs, 2012). The BDIs are shown to the capture the evolution of the 2011 U.S
drought with BDI_b providing a more reasonable representation of the observed drought conditions in
in October and November 2011 [Figure 8].

The 2013 drought in New Zealand was one of the most extreme on record for this country. During the
period of 2012–2013, the dry conditions were unusually widespread across New Zealand, and particularly
serious in the North Island (National Institute of Water and Atmospheric Research, 2013a); which reduced
agricultural production and cost the national economy at least US$1.3 billion (Herring et al., 2014). The New
Zealand Drought Monitor shows the progression and recession of the drought from October 2012 to May
2013 with the entire New Zealand experiencing the severe drought in March 2013 (National Institute of
Water and Atmospheric Research, 2013b). Figures 9a and 9b show both BDI_s and BDI_w cannot correctly
capture the situations of 2012–2013 New Zealand drought events; while the BDI_b in Figure 9c perfectly
exhibits the drought episodes.

6. Discussion

The results shown in sections 4 and 5 indicate that the BDI_b technique, which objectively integrates
drought estimations with the lowest TCEM-based RMSEs, can present more robust capability to track
drought development with respect to historical records. However, there are several considerations relevant
for interpreting these results. The challenges and opportunities are discussed further here associated with
integration approaches and drought characteristics.

6.1. Shallow Sensing Depth of Microwave Soil Moisture
One issue that must be considered is the shallow sensing depth afforded by the microwave SM products
used in this paper. The LSM modeled drought estimates are based on 0–100 cm averages which are much
deeper than the top few centimeters sampling depth of the microwave SM-based retrievals. And the ESI
represents temporal standardized anomalies in the ratio of actual ET to potential ET (PET), which is also
dependent on the root zone SM content related to the rooting depth of the active vegetation (Anderson
et al., 2015; Otkin et al., 2015). In fact, using the surface-only microwave remote sensing product over
sparsely vegetated areas is consistent with the properties of NLSM and ESI proxy (Yilmaz et al., 2012); and
the potential vertical inconsistencies over densely vegetated areas can be effectively resolved at weekly
time scales in terms of the strong linear relation between the surface and the vegetation-adjusted soil mois-
ture simulations in Noah land surface model (Albergel et al., 2008; Yilmaz et al., 2012). Although the satellite
SM retrievals can only penetrate a few centimeters depth, they represent the fastest response SM dynamics
to meteorological anomalies and provide a measure for short-term droughts (Yuan et al., 2015).
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Figure 7. (a) Monthly BDI_s on the subregion (from 408N, 208E to 708N, 808E) domain in 2010. (b) Monthly BDI_w on the subregion (from 408N, 208E to 708N, 808E)
domain in 2010. (c) Monthly BDI_b on the subregion (from 408N, 208E to 708N, 808E) domain in 2010.
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Figure 8. (a) Monthly BDI_s on the subregion (from 258N, 21158W to 408N, 2908W) domain in 2011. (b) Monthly BDI_w on the subregion (from 258N, 21158W to
408N, 2908W) domain in 2011. (c) Monthly BDI_b on the subregion (from 258N, 21158W to 408N, 2908W) domain in 2011.
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Figure 9. (a) Monthly BDI_s across the New Zealand domain (from 488S, 1658E to 2338S, 1808E) from August 2012 to July
2013. (b) Monthly BDI_w across the New Zealand domain (from 488S, 1658E to 2338S, 1808E) from August 2012 to July
2013. (c) Monthly BDI_b across the New Zealand domain (from 488S, 1658E to 2338S, 1808E) from August 2012 to July
2013.
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6.2. Uncertainties From Defining the Errors and the Use of Standardized Anomalies
TCEM has been implemented in previous studies using in situ observations, and it shows a surprisingly
robust ability of accurate evaluation on the time series (Draper et al., 2013; Janssen et al., 2007; Miralles
et al., 2010; Scipal et al., 2008). The three retrieval sources in this study sufficiently meet the assumption
that their errors should be from mutually distinct sources and are not cross-correlated. Prior to the applica-
tion of TCEM, we transform all the SM time series into standardized anomalies; and their error variances
thus are transformed into the same scale, satisfying the assumptions used in the TCEM to quantify the origi-
nal accuracy for all of the SM retrievals (Miralles et al., 2010; Yilmaz & Crow, 2013; Yilmaz et al., 2012). How-
ever, with narrowing our focus to drought assessments in this paper, the information content of the SM-
based drought estimates can absolutely reflect the possibility that certain products are of higher quality
than others (Miralles et al., 2010).

6.3. Timescale of Compositing Window and Length of Record
For this study, composites are generated at 28 day time steps over 4 week moving windows for each of 6
SM retrievals. Across 2011–2014 (SMOS) and 2008–2014 (ASCAT, WindSat and SMOPS) years, the climatolo-
gies are based on samples of 112 (28 days 3 4 years) for SMOS and 196 (28 days 3 7 years) for ASCAT,
WindSat and SMOPS. Additionally, the SM-based BDIs are also validated against PDSI and SPEI standardized
anomalies with respect their 1985–2014 averages that should well capture climatological distributions. The
large sample size and the regarded 30 year PDSI and SPEI averages indicate that the results shown in this
paper are qualitatively stable and high likely representative of longer period, although the research periods
for SMOS and other three MW SM products are 4 year and 7 year, respectively.

6.4. Errors Specific to Individual MW SM Products
Microwave remote sensing SM products suffer from the instrument noise and uncertainty in microwave
emission modeling, which hampers their use in operational drought monitoring. The ASCAT SM-based
drought estimations exhibit higher correlations with the USDM data sets at the regional scale and the PDSI
and SPEI products on a global domain in comparison with the passive microwave SM products including
WindSat and SMOS. This suggests that the weights of the active SM signals should be increased to enhance
the drought monitoring capabilities of the blended products that integrate satellite SM retrievals from mul-
tiple single sensors. However, active microwave sensors such as ASCAT, have been shown to have greater
uncertainty over high-elevation areas (Wagner et al., 2013), which leads to the modest ASCAT performance
(e.g., central Asia). The error propagation for the remotely sensed SM products can be easily tracked in the
weighting-based BDI_s and BDI_w data sets with BDI_s being significantly impacted, while this kind of
uncertainty is unreasonably identified in BDI_b maps. Using uniform weighting, the BDI_s is determined by
the relative importance of each quantity on the average. The improvements related to the use of high qual-
ity data and degradations related to data sets with poor retrieval quality have equal opportunities to impact
the BDI_s capabilities in monitoring drought events. Although BDI_w is objectively developed according to
TCEM RMSE-based weights and the fractions of high (low) quality signals are increased (decreased), the
lower weights of drought evaluations that have larger uncertainties can still strongly degrade BDI_w’s per-
formance. Relative to weights-based BDI_s and BDI_w, the BDI_b can merge the drought estimation that
has lower uncertainty with ignoring the poor representation of the soil moisture condition.

6.5. Seasonal Issues
Drought monitoring and warning studies are generally focused on the drought events occurred during the
growing season; however, recent studies have claimed that much more attention should be paid to cold
season droughts since their occurrence and intensity are increasing, such as the California drought during
November–April winters of 2011/12–2013/14, the 2010–2012 China Southwest drought, and consecutive
and worsening winter drought conditions in Nepal during 2000–2009 period (Seager et al., 2015; Wang
et al., 2013; Yin et al., 2015a). However, the remotely sensed observations used in drought monitoring are
greatly hampered by the frozen soil and low evapotranspiration, which can lead to the poor performance
of weights-based BDI_s and BDI_w in cold season with missing the drought signals. This situation can be
significantly improved by BDI_b with integrating the drought assessments that can exhibit the lowest
TCEM-based RMSE values. The statistical results show that the satellite SM signals assembled into BDI_b are
around 12%, 22%, 29%, and 25% in winter (December, January, and February), spring (March, April, and
May), summer (June, July, and August), and autumn (September, October, and November), respectively
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with shifting their detection toward North in the warm season (April–September) and toward South during
October–March period.

6.6. Additional Future Works
6.6.1. Development of Finer Resolution BDI_b
Microwave satellite sensors have proven to be effective for remotely sensed SM because of the large con-
trast of dielectric properties between liquid water and dry soil (Njoku & Kong, 1997). However, because of the
current limitation of satellite antenna technology, the spatial resolutions of the microwave SM products
are generally tens of kilometers. To overcome the coarse spatial scale limitation of relatively accurate
microwave SM data, several downscaling algorithms have been proposed in recent literatures (Merlin et al.,
2006; Narayan et al, 2006; Parinussa et al, 2014; Peng et al, 2016; Piles et al, 2011; Zhan et al., 2016).
Additionally, the land surface temperature can be retrieved from thermal infrared imagery over a broad range
of spatiotemporal resolutions from several meters to couple kilometers, which allows developing the finder
spatial resolution ESI product on the whole global domain (Anderson et al., 2014). Based on the downscaled
satellite SM products and the tens of meters ESI data, the finer spatial resolution BDI_b in drought occurence
areas, which can provide much more details for decision makers, is expected to be developed in
near future.
6.6.2. Integrating More Available Drought Evaluations
We proposed to objectively integrate the SM satellite observations and model simulations based on quanti-
tative evaluations of their uncertainties derived from the TCEM. TCEM requires three data sets with their
errors totally independent from each other. This requirement will be met by selecting two independent
data sets as anchors and use them to evaluate other data sets that are independent from the two anchor
data sets and probably similar to each other. Thus, we will have the general form for equations (2–4):

wa15P1l�

wa25P1x�

we5P1q�

(5)

where wa1, wa2, and we are the standardized anomalies of the two anchor data sets and the evaluating prod-
uct, respectively; and l�, x� , and q� are the corresponding unknown errors. With assumption the three
kinds of errors are uncorrelated (l�q�50; l�x�50; q�x�50), their RMSE values can be given by

na15ðwa12wa2Þðwa12weÞ5l�2

na25ðwa22wa1Þðwa22weÞ5x�2

ne5ðwe2wa1Þðwe2wa2Þ5q�2

(6)

Specifically, for agricultural drought—the water deficit is the negative soil moisture anomaly that crop could
not tolerate (Anderson et al., 2011; Wilhite & Glantz, 1985), the LSM simulations and the thermal infrared/
near-infrared satellite observations-based ESI/Vegetation Health Index (Kogan, 1997) can be used as the
anchors. Current existing and upcoming microwave SM products and in situ SM measurements are thus
able to be quantitative evaluated, and in turn to be objectively integrated toward the BDI_b.

In recent years, increased attention has also been paid to the role of previously neglected water source
(e.g., irrigation, water storage) processes on the surface energy balance, since traditional soil water balance
modeling is only based on vertical water flow and neglecting secondary water source due to processes
(Hain et al., 2015; Kumar et al., 2016). Thus, time series data sets of existing meteorological (e.g., satellite pre-
cipitation) and hydrological (e.g., satellite irrigation/water storage retrievals) drought monitoring indicators
will be scaled to their standard anomalies. Based on quantitative evaluations of the TCEM-based uncertain-
ties, short- and long-term BDI_b products are expected to be further improved with integrating meteoro-
logical and hydrological drought assessments, respectively.

7. Conclusions

We integrated the commonly used satellite SM products, ALEXI-based ESI and LSM simulations into a sub-
jective BDI_s and two objective BDIs (BDI_w and BDI_b) based on quantitative evaluations of the relative
uncertainties of these products derived from a TCEM. Performance of the three BDIs was analyzed in
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comparison with drought monitoring benchmarks and the official drought records. BDI_s using the subjec-
tive weighting exhibits modest performance with trending to underestimate drought intensity. Relative to
the weighting-based BDI_s and BDI_w, the BDI_b can more reasonably measure drought severity according
to intensity and duration, and can provide better capability to identify the onset and end of drought epi-
sodes. Over the BDI_s and BDI_w, the BDI_b presents an advantage of higher consistence with the climato-
logical PDSI and SPEI data sets and current operational USDM product. In addition to operational insights,
the BDI_b is recommended as an indicator which can merge new upcoming satellite SM products and
more available drought evaluations when they can respect to the TCEM assumptions.
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